

Electrical Engineering Department Prelab2
Student Name: abed.hmeadan
Id:1161306
Instructor: Dr. jaser saed section:1
Date:22/9/2018

Part A: Proportionality

1 For the circuit of Figure 4.1, use PSPICE to generate a plot of (VO) (use differential voltage marker), for a Vin sweep from 0 to 15 V in a 1.5 V step, use cursors to mark data point at Vin $=5$ and 10 V .

Fig 4.1
Part B: Superposition 1. Use PSPICE to determine the voltages at all nodes and the current in all the branches for the circuits in Figures 4.2 to 4.4.

Fig4. 2

Fig 4.3

Part C: Thevenin's Theorem

1. Find and draw the Thevenin equivalent with respect to the terminals X, Y for the circuit in Figure 4.5 (Show calculation of VThevenin and RThevenin).

Vth $=(2.2 /(2.2+.82)) * 10=7.2 \mathrm{~V}$
Rth $=(820 / / 2.2 \mathrm{k})+390=990$ ohm

2. Simulate the circuit of Figure 4.5 using PSPICE to determine the value of voltage around and current through the 680Ω resistor

Fig 4.5
3. Simulate Thevenin equivalent circuit that you found in step 1 shown in Figure 4.7 using PSPICE to determine the value of voltage around and current through the 680Ω resistor

Part D: $\Delta-Y$ Transformation

1. For the circuit of Figure 4.8 calculate the equivalent Y for the Δ formed by the three $3.3 \mathrm{k} \Omega$ resistors, draw the resulting circuit.

$$
R y 1=1 / 3 * R \Delta=1.1 \mathrm{k}
$$

2. Simulate the circuit of Figure 4.8 using PSPICE, find the value of the current I , and calculate voltage Vab from simulation results.

Fig 4.8
$\mathrm{Vab}=7.918-7.456=.462 \mathrm{~V}$
$\mathrm{I}=4.65 \mathrm{~mA}$
3. Simulate the circuit resulting from replacing the Δ formed by $3.3 \mathrm{k} \Omega$ resistors with the equivalent Y found in step 1.

Part E: Reciprocity Theorem 1. Simulate the circuits of Figure 4.9 and Figure 4.10 using PSPICE to find the value of the current (I).

Fig 4.9

Fig 4.10

